Part 13 (1/2)

The other diagonal lines are for the proportion of the dimensions marked on the figure. Thus the depth of face, or distance from the pitch line to the extremity or tooth point for a 4 inch pitch, would be measured along the line B C, from the vertical line B to the first diagonal. The thickness of the tooth would be for a 4 inch pitch along line B C from B to the second diagonal, and so on. For a 3 inch pitch the measurement would be taken along the horizontal line, starting from the 3 on the line A B, and so on. On the left of the diagram or scale is marked the lbs. strain each pitch will safely transmit per inch width of wheel face, according to Professor Marks.

[Ill.u.s.tration: Fig. 236.]

The application of the scale as follows: The pitch circles P P and P'

P', Figure 236, for the respective wheels, are drawn, and the height of the teeth is obtained from the scale and marked beyond the pitch circles, when circles Q and Q' may be drawn. Similarly, the depths of the teeth within the pitch circles are obtained from the scale or diagram and marked within the respective pitch circles, and circles R and R' are marked in. The pitch circles are divided off into as many points of equal division, as at _a_, _b_, _c_, _d_, _e_, etc., as the respective wheels are to have teeth, and the thickness of tooth having been obtained from the scale, this thickness is marked from the points of division on the pitch circles, as at _f_ in the figure, and the tooth curves may then be drawn in. It may be observed, however, that the tooth thicknesses will not be strictly correct, because the scale gives the same chord pitch for the teeth on both wheels which will give different arc pitches to the teeth on the two wheels; whereas, it is the arc pitches, and not the chord pitches, that should be correct. This error obviously increases as there is a greater amount of difference between the two wheels.

The curves given to the teeth in Figure 234 are not the proper ones to transmit uniform motion, but are curves merely used by draughtsmen to save the trouble of finding the true curves, which if it be required, may be drawn with a very near approach to accuracy, as follows, which is a construction given by Rankine:

Draw the rolling circle D, Figure 237, and draw A D, the line of centres. From the point of contact at C, mark on D, a point distant from C one-half the amount of the pitch, as at P, and draw the line P C of indefinite length beyond C. Draw the line P E pa.s.sing through the line of centres at E, which is equidistant between C and A. Then increase the length of line P F to the right of C by an amount equal to the radius A C, and then diminish it to an amount equal to the radius E D, thus obtaining the point F and the latter will be the location of centre for compa.s.ses to strike the face curve.

[Ill.u.s.tration: Fig. 237.]

[Ill.u.s.tration: Fig. 238.]

Another method of finding the face curve, with compa.s.ses, is as follows: In Figure 238 let P P represent the pitch circle of the wheel to be marked, and B C the path of the centre of the generating or describing circle as it rolls outside of P P. Let the point B represent the centre of the generating circle when it is in contact with the pitch circle at A. Then from B mark off, on B C, any number of equidistant points, as D, E, F, G, H, and from A mark on the pitch circle, with the same radius, an equal number of points of division, as 1, 2, 3, 4, 5. With the compa.s.ses set to the radius of the generating circle, that is, A B, from B, as a centre, mark the arc I, from D, the arc J, from E, the arc K, from F, and so on, marking as many arcs as there are points of division on B C. With the compa.s.ses set to the radius of divisions 1, 2, etc., step off on arc M the five divisions, N, O, S, T, V, and at V will be a point on the epicycloidal curve. From point of division 4, step off on L four points of division, as _a_, _b_, _c_, _d_; and _d_ will be another point on the epicycloidal curve. From point 3, set off three divisions, and so on, and through the points so obtained draw by hand, or with a scroll, the curve.

[Ill.u.s.tration: Fig. 239.]

Hypocycloids for the flanks of the teeth maybe traced in a similar manner. Thus in Figure 239, P P is the pitch circle, and B C the line of motion of the centre of the generating circle to be rolled within P P.

From 1 to 6 are points of equal division on the pitch circle, and D to I are arc locations for the centre of the generating circle. Starting from A, which represents the location for the centre of the generating circle, the point of contact between the generating and base circles will be at B. Then from 1 to 6 are points of equal division on the pitch circle, and from D to I are the corresponding locations for the centres of the generating circle. From these centres the arcs J, K, L, M, N, O, are struck. The six divisions on O, from _a_ to _f_, give at _f_ a point in the curve. Five divisions on N, four on M, and so on, give, respectively, points in the curve.

There is this, however, to be noted concerning the construction of the last two figures. Since the circle described by the centre of the generating circle is of a different arc or curve to that of the pitch circle, the length of an arc having an equal radius on each will be different. The amount is so small as to be practically correct. The direction of the error is to give to the curves a less curvature, as though they had been produced by a generating circle of larger diameter.

Suppose, for example, that the difference between the arc _a_, _b_, and its chord is .1, and that the difference between the arc 4, 5, and its chord is .01, then the error in one step is .09, and, as the point _f_ is formed in five steps, it will contain this error multiplied five times. Point _d_ would contain it multiplied three times, because it has three steps, and so on.

The error will increase in proportion as the diameter of the generating is less than that of the pitch circle, and though in large wheels, working with large wheels, so that the difference between the radius of the generating circle and that of the smallest wheel is not excessive, it is so small as to be practically inappreciable, yet in small wheels, working with large ones, it may form a sensible error.

[Ill.u.s.tration: Fig. 240.]

For showing the dimensions through the arms and hub, a sectional view of a section of the wheel may be given, as in Figure 240, which represents a section of a wheel, and a pinion, and on these two views all the necessary dimensions may be marked.

[Ill.u.s.tration: Fig. 240 _a_. (Page 203.)]

If it is desired to draw an edge view of a wheel (which the student will find excellent practice), the lines for the teeth may be projected from the teeth in the side view, as in Figure 240 _a_. Thus tooth E is projected by drawing lines from the corners A, B, C, in the side view across the face in the edge view, as at A, B, C in the latter view, and similar lines may be obtained in the same way for all the teeth.

When the teeth of wheels are to be cut to form in a gear-cutting machine, the thickness of the teeth is nearly equal to the thickness of the s.p.a.ces, there being just sufficient difference to prevent the teeth of one wheel from becoming locked in the s.p.a.ces of the other; but when the teeth are to be cast upon the wheel, the tooth thickness is made less than the width of the s.p.a.ce to an amount that is usually a certain proportion of the pitch, and is termed the side clearance. In all wheels, whether with cut or cast teeth, there is given a certain amount of top and bottom clearance; that is to say, the points of the teeth of one wheel do not reach to the bottom of the s.p.a.ces in the other. Thus in the Pratt and Whitney system the top and bottom clearance is one-eighth of the pitch, while in the Brown and Sharpe system for involute teeth the clearance is equal to one-tenth the thickness of the tooth.

In drawing bevil gear wheels, the pitch line of each tooth on each wheel, and the surfaces of the points, as well as those at the bottom of the s.p.a.ces, must all point to a centre, as E in Figure 241, which centre is where the axes of the shafts would meet. It is unnecessary to mark in the correct curves for the teeth, for reasons already stated, with reference to the curves for a spur wheel. But if it is required to do so, the construction to find the curves is as shown in Figure 242, in which let A A represent the axis of one shaft, and B that of the other of the pair of bevil wheels that are to work together, their axes meeting at W; draw the line E at a right angle to A A, and representing the pitch circle diameter of one wheel, and draw F at a right angle to B, and representing the pitch circle of the other wheel; draw the line G G, pa.s.sing through the point W and the point T, where the pitch circles or lines E F meet, and G G will be the line of contact of the tooth of one wheel upon the tooth of the other wheel; or in other words, the pitch line of the tooth.

[Ill.u.s.tration: Fig. 241.]

[Ill.u.s.tration: Fig. 242.]

Draw lines, as H and I, representing the tooth breadth. From W, as a centre, draw on each side of G G dotted lines, as P, representing the height of the tooth above and below the pitch line G G. At a right angle to G G draw the line J K; and from where this line meets B, as at Q, mark the arc _a_, which will represent the pitch circle for the large diameter of the pinion D. [The smallest wheel of a pair of gears is termed the pinion.] Draw the arc _b_ for the height, and circle _c_ for the depth of the teeth, thus defining the height of the tooth at that end. Similarly from P, as a centre mark (for the large diameter of wheel C,) arcs _g_, _h_, and _i_, arc _g_ representing the pitch circle, _i_ the height, and _h_ the depth of the tooth. On these arcs draw the proper tooth curves in the same manner as for spur wheels; that is, obtain the curves by the construction shown in Figures 237, or by those in Figures 238 and 239.

To obtain the arcs for the other end of the tooth, draw line M M parallel to line J K; set the compa.s.ses to the radius R L, and from P, as a centre, draw the pitch circle _k_. For the depth of the tooth draw the dotted line _p_, meeting the circle _h_ and the point W. A similar line, from _i_ to W, will give the height of the tooth at its inner end.

Then the tooth curves may be drawn on these three arcs, _k_, _l_, _m_, in the same as if they were for a spur wheel.

Similarly for the pitch circle of the inner and small end of the pinion teeth, set the compa.s.ses to radius S L, and from Q as a centre mark the pitch circle _d_. Outside of _d_ mark _e_ for the height above pitch lines of the tooth, and inside of _d_ mark the arc _f_ for the depth below pitch line of the tooth at that end. The distance between the dotted lines as _p_, represents the full height of the tooth; hence _h_ meets _p_, which is the root of the tooth on the large wheel. To give clearance and prevent the tops of the teeth on one wheel from bearing against the bottoms of the s.p.a.ces in the other wheel, the point of the pinion teeth is marked below; thus arc _b_ does not meet _h_ or _p_, but is short to the amount of clearance. Having obtained the arcs _d_, _e_, _f_, the curves may be marked thereon as for a spur wheel. A tooth thus marked is shown at _x_, and from its curves between _b_ and _c_, a template may be made for the large diameter or outer end of the pinion teeth. Similarly for the wheel C the outer end curves are marked on the arcs _g_, _h_, _i_, and those for the other end of the tooth are marked between the arcs _l_, _m_.

[Ill.u.s.tration: Fig. 243. (Page 207.)]